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Extended „n/v…-Stillinger cluster for use in the theory of homogeneous nucleation
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In this paper we develop a theory for an extended version of the (n/v)-Stillinger cluster that has been used
in nucleation theory, wheren means the number of particles constituting the cluster characterized by the
volume v. The ‘‘extended cluster’’ incorporates some of the surrounding supersaturated vapor. This cluster,
although requiring more extensive simulation than the original (n/v)-Stillinger cluster, is almost devoid of
approximation. It maintains the non-ad-hocnature of the original (n/v)-Stillinger cluster implicitly. The theory
of the cluster is also applicable to clusters which avoid redundancy by some other means than the so-called
‘‘connectivity requirement.’’ Simulation of the extended cluster is now being implemented and will be used in
the theory of the homogeneous nucleation rate.@S1063-651X~99!08307-5#

PACS number~s!: 64.60.Qb, 82.60.Nh
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I. INTRODUCTION

Homogeneous nucleation is a physical process that
been known for many years. The early theory of this proce
known as the classical nucleation theory~CNT!, was devel-
oped and improved in the years 1920–1940 by Volmer@1#,
Farkas@2#, Becker and Do¨ring @3#, Zeldovich@4#, and Fren-
kel @5#. In it, clusters ofn particles participating in the nucle
ation process are assumed to be spherical drops of volumv
having the properties, e.g., surface tension and density, o
macroscopic liquid. In addition, drops were assumed to g
or decrease in size by the gain or loss of one particle~atom
or molecule! at a time. This stepwise process is described
the following set of master equations:

d fi

dt
5b i f i2g i 11f i 11 , i>1 ~1!

in which f i represents the number of drops consisting oi
particles. The parametersb i and g i 11 can be evaluated by
assuming that the master equation remains valid in a c
strained equilibrium at the same degree of supersaturatio
which the nucleation rate is to be determined, although
present an equivalent method referred to the saturated v
is often preferred@6#. In the constrained equilibrium th
number of dropsf i equals its equilibrium counterpartni and
use is made of the principle of detailed balance to obtai
relation betweenb i andg i 11 . Finally, the coefficientsb i are
estimated by determining the collision rates between
drops and the particles of the gas, assuming that all the
ticles that collide with a drop stick to it~sticking coefficient
equal to unity!. The determination of the nucleation rate c
thus be divided into two distinct steps.~i! One first deter-
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mines the equilibrium numbers of clusters, and by mak
use of the principle of detailed balance determines the c
ficient g i 11 from b i . ~ii ! Once these coefficients are know
the constraint on the system is released and the master e
tions are solved under steady state conditions.

CNT has proven to be quite successful in the prediction
critical degrees of supersaturation but much less succes
in the prediction of nucleation rates. Moreover, CNT co
tains approximations which at first sight seem minor b
which, for small systems, can lead to considerable error
addition, the liquid is assumed to be incompressible and
translational degrees of freedom of the drop are either
nored or treated improperly. This lack of rigor seems to be
the origin of what is known as the ‘‘replacement free e
ergy’’ problem which gave rise to a controversy that~in our
opinion! has been finally resolved@7#. Due to these and othe
approximations, there have been attempts, during the
two decades, to develop molecular theories for the rate
nucleation. A short review of these theories can be found
Ref. @8#. To our knowledge, most of these theories are ba
on the set of master equations, Eq.~1!, and make use of the
principle of detailed balance. However, they differ in th
way in which clusters participating in the nucleation proce
are defined, and in how the numbers of clusters, in c
strained equilibrium, are evaluated. This paper concerns
last but crucial point. As already indicated, from the numb
of clusters in the equilibrium distribution of clusters an
from an approximate expression for the coefficientsb i , it is
possible to determine the evaporation coefficientsg i . This
allows the calculation of the nucleation rate. However, un
recently, not much attention has been paid to a precise d
nition of the clusters involved in the nucleation process. S
eral molecular theories of homogeneous nucleation, so
based on the (n/v)-Stillinger cluster, have been developed
overcome this difficulty @8–16#. This paper describes
method, free of almost any approximation, and with the
of computer simulation, for the evaluation of equilibriu
3
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distribution of the (n/v)-Stillinger clusters. One of the firs
and most important findings of these new approaches
that, in order for a cluster definition to be usable in a m
lecular theory, it must allow anonredundantcounting of
clusters. The concept of the (n/v)-Stillinger cluster arose
from the requirement that in order for an assembly ofn par-
ticles to constitute a cluster and thus participate in the nu
ation process, the assembly must have a lifetime long eno
to allow it to interact with particles in the surrounding vapo
and eventually grow. Certainly, not all configurations ofn
particles in a vapor satisfy this property. It is thus necess
to find one~or several! parameter~s! that allow the selection
of assemblies ofn particles that best imitate the requisi
clusters. One definition that satisfies the nonredunda
property and which, in our opinion, comes close to satisfy
the second requirement was introduced by Stillinger@17# in a
different context, and is based on a connectivity criteri
This definition was used in homogeneous nucleation the
by Rao, Berne, and Kalos@18# and more recently in Ref.@8#,
for the case of particles interacting with spherically symm
ric potentials. The requirement is the following.

Consider a vapor consisting ofN particles. Thenn par-
ticles among them belong to a particularn cluster if ~i! there
exists a continuous path between any pair of them, and~ii !
no such path exists between any particle in the surround
vapor and any particle of the cluster~but can still exist within
the particles of the vapor, i.e., the vapor may contain ot
clusters!. A continuous path is defined as one joining t
centers of particles, such that the distance between two
nected centers is less than a prescribed distancedc which
may be denoted as the ‘‘connectivity distance.’’ Thus ann
cluster consists of the assembly of configurations of
whole system that satisfy both conditions~i! and ~ii !. This
can be expressed mathematically in the following form. T
particles labeled 1,...,n belong to ann cluster if the function

a1~r1 ,...,rn!a2~r1 ,...,rn ;rn11 ,...,rN!51, ~2!

where r i represents the position of thei th particle.
a1(r1 ,...,rn)51 if particles 1,...,n satisfy condition~i! and
is 0 otherwise.a2(r1 ,...,rn ;rn11 ,...,rN)51 if the (N2n)
remaining particles from the vapor satisfy condition~ii ! and
is 0 otherwise. The second condition ensures that the no
dundancy requirement is satisfied.Any nonredundant defini
tion of a cluster can be expressed in a form equivalent to
(2). The precise expressions fora1(r1 ,...,rn) and
a2(r1 ,...,rn ;rn11 ,...,rN) depend, however, on the precis
definition of the cluster.~Note that the cluster defined in Re
@13# forms a subset of the Stillinger cluster.!

In a previous paper@19#, we derived an expression for th
number ofn clusters@(n/v)-Stillinger clusters# in a vapor of
N particles at equilibrium in a volumeV. This derivation
began with theexactexpression of theN-particle distribution
function. Some approximations were, however, necessar
obtaining the final result. Use of this result, in a theory
the rate of nucleation, demonstrated that even these ap
ently minor approximations led to variations of several
ders of magnitude in the predicted nucleation rate@8#. More
generally, the fact that any approximation can affect
nucleation rate by several orders of magnitude seems c
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acteristic of the nucleation process and is certainly one of
reasons that previous rate theories have not been compl
successful. Thus it is absolutely necessary to limit appro
mation as much as possible, and to analyze the effect
residual approximations in detail.

In this paper we extend the definition of th
(n/v)-Stillinger cluster so that it includes part of the vapo
in fact, n8 particles of that vapor. This extended clust
therefore requires the introduction of an additional parame
n8, so that we will refer to it as an (n,n8/v)-Stillinger clus-
ter. We derive the numbersp(n,n8/v) of such clusters for a
system at equilibrium. It will be seen that the derivation
almost rigorous, requiring only the introduction of very m
nor approximations that are much less severe than thos
troduced previously@8,19#. The equilibrium number of clus-
ters p(n)5(n8(vp(n,n8/v), together with the principle of
detailed balance, allows the estimation of the coefficientsg i .
In addition to defining the (n,n8/v) cluster we present an
adaptation of the grand canonical Monte Carlo simulat
algorithm that allows the evaluation of its equilibrium distr
bution.

Before proceeding to this derivation it is appropriate
remark that the same theory is applicable to any clus
similar in all details except that the nonredundancy requ
ment could be chosen in another way. It is, however, nec
sary to enforce nonredundancy.

II. EXTENDED CLUSTER

As already mentioned, almost all theories of homog
neous nucleation require a knowledge of the numbers
clusters present in the vapor at equilibrium. As indicated,
have developed a rigorous method that allows the dete
nation of these numbers and is applicable to any cluster d
nition as long as it satisfies thenonredundancyrequirement
@19#. Our starting point was theN-particle distribution func-
tion in the canonical ensemble. After a lengthy but straig
forward calculation the following expression was obtain
for the number of (n/v) clusters having adefinedvolume
ranging fromv to v1dv:

p~n/v !dv5
dv
L3 expH 2bF2kT ln~L23n3/2V!

1Pvc~v !2mn1U02kT

3 lnS L23~n22!n3/2

~n21!! E
v
dr28¯E

v
drn218

3exp2bU~r18 ,...,rn8!a1~r18 ,...,rn8! D G J ,

~3!

whereb is 1/kT, k is the Boltzmann constant,T the absolute
temperature,V the volume of the system~usually taken as 1
cm3!, P is the pressure of the vapor, andL is the de Broglie
wavelength. In this expression the integrations are perform
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PRE 60 773EXTENDED (n/v)-STILLINGER CLUSTER FOR USE IN . . .
with the center of mass of then particles fixed at the cente
of the spherical volumev of the cluster, and the prime
coordinates are in the center of mass frame. One of thn
particles is maintained in the spherical shell that contains
volume, and is denoted as the ‘‘shell molecule.’’ For the
reasons the integration involves only (n22) particles.
U(r18 ,...,rn8) represents the interaction energy of then par-
ticles. To derive this expression from the rigorous start
point of theN-particle distribution function it was necessa
to spatially~not energetically! decouple the cluster from th
vapor. To accomplish this it was assumed that the parti
of the cluster excluded a volumevc(v), a function of the
volumev of the cluster itself. In the derivation of Eq.~1! of
Ref. @19# it was even assumed, as one approximation,
vc(v)5v. However, to each configuration of the particles
the cluster there corresponds a possibly different exclus
volume. In Ref.@8# it was shown that changing the exclusio
volume can influence the nucleation rate by several order
magnitude. A second approximation involved the assump
that ]F(N2n,V2vc)/]vc52P whereF(N,V) is the Hel-
moltz free energy of the system composed ofN particles in a
volumeV. Stillinger, in his pioneering paper@17#, used the
grand canonical ensemble to show that this relation bec
increasingly exact as the vapor became more attenuate
has been shown@20# that the pressureP appearing in this
expression does not exactly equal the pressure of the v
but depends on the shape ofvc . This effect should, however
be small. Finally, the termU0 represents the mean intera
tion energy between the cluster and the gas. To estimateU0
it was assumed that the particles belonging to the clu
were uniformly distributed over the volumev and that the
density of the vapor was constant up to a distancedc that
depended on the cluster definition. Interaction of the clus
with the vapor depends on the configuration of the partic
e
e
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within the cluster and the magnitude of the approximat
introduced by the mean field character ofU0 is not clear.
Fortunately, in most cases involving nucleation in vapors t
interaction is small enough to be neglected.

Unfortunately, all these approximations act exponentia
on the numbers of (n/v) clusters at equilibrium. Even if they
seem minor they can still cause variations in the nuclea
rate of several orders of magnitude@8#. Hence, to avoid these
approximations and to derive the numbers of (n/v) clusters
as precisely as possible, we have developed the follow
modified approach. In this approach (n,n8/v) clusters are
defined in the following way: ~i! the n particles satisfy the
condition~i! of our initial definition of an (n/v) cluster; and
~ii ! a spherical volumev1 concentric with the sphere definin
the cluster enclosesn8 additional particles that belong to th
surrounding vapor. Thesen8 particles thus satisfy the cond
tion ~ii ! in our initial definition of the (n/v)-Stillinger clus-
ter. v1 is thus larger thanv. It should be emphasized tha
then8 particles can be foundeverywherein v1 and thus also
in v as long as they satisfy the condition~ii ! of the initial
cluster definition.v1 is surrounded by the vapor and the r
maining system is thus characterized by the volumeV2v1

and the number of particlesN2n2n8. V-v1 acts as a par-
ticle and energy reservoir.

We now derive the expression for the numb
p(n,n8/v)dv of (n,n8/v) clusters characterized by a volum
ranging fromv to v1dv. We follow a route similar to that
used in Ref.@19#. Start with then-particle distribution func-
tion. Then the number of configurations of the entire syst
composed ofN particles in the volumeV such that there is
the center of a first particle indr1 , the center of a second
particle indr2 ,..., and thecenter of an (n1n8)th particle in
drn1n8 is
-
on
r~n1n8!~r1 ,...,rn1n8!dr1¯drn1n85
N!

~N2n2n8!!

dr1¯drn1n8*Vdrn811¯*VdrN exp@2bU~r1 ,...,rN!#

Z~N,V!
, ~4!

whereZ(N,V) represents the configuration integral of theN particles inV. Condition ~ii ! of the cluster definition is repre
sented mathematically by the functiona2(r1 ,...,rn ;rn11 ,...,rn1n8), equal to unity when the particles located in configurati
r1 ,...,rn1n8 satisfy the condition~ii ! and is 0 otherwise. It is assumed here that the particles 1 –n are part of the cluster, while
the remainingn8 particles are part of the vapor inv1 . The mean number of (n,n8/v)-Stillinger clusters indr1dr2¯drn1n8 is
then

R~n,n8/v !~r1 ,...,rn ;rn11 ,...rn1n8!dr1¯drn1n8

5
N!

Z~N,V!

dr1¯drn1n8
~N2n2n8!

E
V2v1

drn1n811¯E
V2v1

drNa1~r1 ,...,rn!

3a2~r1 ,...,rn ;rn11 ,...,rn1n8!exp@2bU~r1 ,...,rN!#. ~5!

Expressing the coordinates of all the (n1n8) particles in the center of mass frame of then particles, Eq.~5! can be written as

R~n,n8/v !~r28 ,...,rn8 ;rn118 ,...,rn1n8
8 ,R!dR dr28¯drn1n8

8

5
n3N!

Z~N,V!

dR dr28¯drn1n8
8

~N2n2n8!! E
V2v1

drn1n811E
V2v1

drNa1~r28 ,...,rn8!

3a2~r28 ,...,rn8 ;rn118 ,...,rn1n8
8 !exp@2bU~R,r18 ,...,rN!#, ~6!
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whereR is the coordinate of the center of mass and where the factorn3 is the Jacobian of the transformation to center of m
coordinates@21#. Label with n the shell molecule which defines the volume of the cluster. The number of (n,n8/v) clusters
having their centers indR aroundR and volumes ranging betweenv andv1dv is thus given by

dRE
v
dr28¯E

v
drn218 E

dv
drn8E

v1

drn118 ¯E
v1

drn1n8
8 R~n,n8/v !~r28 ,...,rn8 ;rn118 ,...,rn1n8

8 !

5
N!n3

~N2n2n8!!n8! ~n21!!

dR

Z~N,V!
E

v
dr28¯E

v
drn218 E

dv
drn8E

v1

drn118 ¯E
v1

drn1n8
8

3E
V2v1

drn1n811¯E
V2v1

drNa1~r28 ,...,rn8!a2~r28 ,...,rn1n8
8 !exp@2bU~r1 ,...,rn1n8 ,...,rN!#. ~7!

The (n21)! reflects the fact that, because of the presence of the shell molecule, only (n21) particles in the cluster are
indistinguishable. The number of (n,n8/v) clusters inV ~e.g., 1 cm3! is thus given by

p~n,n8/v !dv5
N!n3

~N2n2n8!!n8! ~n21!!

V dv
Z~N,V!

E
v
dr28¯E

v
drn218 E

v1

drn118 ¯E
v1

drn1n8
8

3a1~r28 ,...,rn8!a2~r28 ,...,rn1n8
8 !exp@2bU~r1 ,...,rn1n8!#

3E
V2v1

drn1n811¯E
V2v1

drN exp@2bU~rn1n811 ,...,rN!#exp@2bW~r1 ,...,rn1n8 ;rn1n811 ,...,rN!#,

~8!

whereW(r1 ,...,rn1n8 ;rn1n811 ,...,rN) is the interaction energy between the (n1n8) particles of the (n,n8/v) cluster and the
remaining particles of the vapor system. However, in contrast to the case where the (n/v) cluster was in direct contact with th
vapor, in the (n,n8/v) cluster there are only then8 particles of the vapor, contained in the volumev1 , in direct contact with
the particles from the vapor outside of the volumev1 . If the difference in the radii between the volumesv andv1 is greater
than the characteristic range of the interaction between two particles then the termW(r1 ,...,rn1n8 ;rn1n811 ,...,rN) is negli-
gible. Indeed, this quantity can be related to an interfacial tension that vanishes when the properties of the vapor are
on either side of the interface@22#. Equation~8! can then be rewritten as

p~n,n8/v !dv5
N!n3V dv

~N2n2n8!!n8! ~n21!!

Z~N2n2n8,V2v1!

Z~N,V!
E

v
dr28¯E

v
drn218 E

v1

drn118 ¯E
v1

drn1n8
8

3a1~r28 ,...,rn8!a2~r28 ,...,rn1n8
8 !exp@2bU~r1 ,...,rn1n8!#. ~9!

Since the Helmholtz free energyF(N,V) andZ(N,V) are related by

F~N,V!52kT lnS Z~N,V!

N!L3N D ~10!

expression~9! can be rewritten as

p~n,n8/v !5
L3~N2n2n8!

L3N exp$2b@F~N2n2n8,V2v1!2F~N,V!#%

3
n3V

n8! ~n21!! Ev
dr28¯E

v
drn218 E

v1

drn118 ¯E
v1

drn1n8
8 a1~r28 ,...,rn8!a2~r28 ,...,rn1n8

8 !exp@2bU~r1 ,...,rn1n8!#.

~11!
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But in this approach the volumev1 is spherical and indepen
dent of internal configuration which was not the case of
excluded volumevc(v) in our earlier approach. The pressu
P appearing in the relation]F(N2n,V2v1)/]v152P now
corresponds to the pressure of the vapor exterior to the c
ter. This relation is only rigorous for an infinite volumev1
but represents a good approximation for not too small v
umesv1 @20#. Thus

F~N,V!2F~N2n2n8,V2v1!52Pv11~n1n8!m.
~12!

Equation~11! then becomes

p~n,n8/v !dv5
L23~n1n8!n3V dv

n8! ~n21!!

3exp$2b@Pv12~n1n8!m#%

3E
v
dr28¯E

v
drn218 E

v1

drn118 ¯E
v1

drn1n8
8

3a1~r28 ,...,rn8!a2~r28 ,...,rn1n8
8 !

3exp@2bU~r1 ,...,rn1n8!#, ~13!

which can be rewritten as

p~n,n8/v !dv5
dv
L3

V

L3 n3/2exp$2b@Pv12~n1n8!m#%

3exp@2bF~n,n8/v !#, ~14!

whereF(n,n8/v) is the internal Helmoltz free energy of th
(n,n8/v)-Stillinger cluster, and can be written in the form

F~n,n8/v !52kT lnS L23~n1n822!n3/2

n8! ~n21!! E
v
d28¯

3E
v
d~n21!8E

v1

d~n11!8¯

3E
v1

d~n1n8!8a1~1,...,n!

3a2~1,...,n,...,n1n8!

3exp$2b@U~1,...,n!1U~n11,...,n1n8!

1W~1,...,n,n11,...,n8!#% D , ~15!

where di8 is shorthand fordr i8 and U(1,...,n) stands for
U(r1 ,...,rn). Moreover,W(1,...,n,n11,...,n1n8) represents
the interaction energy between then particles belonging to
the ‘‘dense’’ part of the cluster and then8 particles which are
part of the gas enclosed in volumev1 . It should be noted
that, unlike Pv in the case of the earlier (n/v)-Stillinger
cluster,Pv, in the exponent of Eq.~14!, has beenrigorously
separated from the other parts of the exponent. Finally
number of (n/v) clusters is given as
e

s-

l-

e

p~n/v !5 (
n850

`

p~n,n8/v !. ~16!

III. COMPUTATIONAL PROCEDURE

The number of (n/v)-Stillinger clusters can be deter
mined using Eqs.~14!–~16! together with Monte Carlo simu
lation of the free energy appearing in Eq.~15!. We first con-
centrate on the evaluation ofF(n,n8/v) for a given (n,n8/v)
cluster. It is known that computer simulation cannot yield t
free energy of a system directly but only the difference in
free energy between different states. The (n,n8/v) cluster is
composed of two kinds of particles. These are then particles
belonging to the cluster itself and then8 particles that are
part of the vapor. In a first step we evaluate the free ene
F (1)(n,n8/v) for an (n,n8/v) cluster in which then8 par-
ticles are not subject to the condition~ii ! of the cluster defi-
nition. Thus

F ~1!~n,n8/v !52kT lnS L23~n1n822!n3/2

n8! ~n21!! E
v
d28¯

3E
v
d~n21!8E

v1

d~n11!8¯

3E
v1

d~n1n8!8a1~1,...,n!

3exp$2b@U~1,...,n!1U~n11,...,n1n8!

1W~1,...,n,n11,...,n8!#% D . ~17!

To determine this free energy we assume that then8 particles
interact with all the other particles through the potent
lu(r ) wherel is a coupling parameter that varies from 0
1 andu(r ) is the pair potential between two particles. W
thus define

F ~1!~n,n8/v,l!52kT lnS L23~n1n822!n3/2

n8! ~n21!! E
v
d28¯

3E
v
d~n21!8E

v1

d~n11!8¯

3E
v1

d~n1n8!8a1~1,...,n!

3exp$2b@U~1,...,n!1lU

3~n11,...,n1n8!

1lW~1,...,n,n11,...,n8!#% D . ~18!
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For l51 one has F (1)(n,n8/v,l51)5F (1)(n,n8/v),
whereas forl50 we have

F ~1!~n,n8/v,l50!52kT lnH L23~n22!n3/2

~n22!! E
v
d28¯

3E
v
d~n21!8a1~1,...,n!

3exp@2bU~1,...,n!#
L23n8

n8!

3E
v1

d~n11!8¯E
v1

d~n1n8!8J .

~19!

The first term involves only then particles satisfying condi-
tion ~i! of the cluster definition and corresponds to t
free energy of an (n/v) cluster that can be evaluated by th
methods described in Refs.@8,19#. The second term in-
volves then8 particles corresponding to an ideal vapor
n8 particles in the volumev1 and is therefore known. The
free energyF (1)(n,n8/v,l50) can therefore be evaluate
F (1)(n,n8/v) is then given by

F ~1!~n,n8/v !5F ~1!~n,n8/v,l50!

1E
0

1

dl
]F ~1!~n,n8/v,l!

]l
, ~20!

which corresponds to the charging method first developed
Kirkwood @23# and often used in computer simulation@24#.
Using Eq.~18! we obtain

F ~1!~n,n8/v !5F ~1!~n,n8/v,l50!

1E
0

1

dl
1

Z8~n,n8/v,l!
E

v
d28¯

3E
v
d~n21!8E

v1

d~n11!8¯

3E
v1

d~n1n8!8@U~n11,...,n1n8!

1W~1,...,n,n11,...,n8!#a1~1,...,n!

3exp$2b@U~1,...,n!1lU~n11,...,n1n8!

1lW~1,...,n,n11,...,n8!#%, ~21!

where

Z8~n,n8/v,l!5E
v
d28¯E

v
d~n21!8E

v1

d~n11!8¯

3E
v1

d~n1n8!8a1~1,...,n!

3exp$2b@U~1,...,n!1lU~n11,...,n1n8!

1lW~1,...,n,n11,...,n8!#%. ~22!
y

Equation~21! can be rewritten in abbreviated notation as

F ~1!~n,n8/v !5F ~1!~n,n8/v,l50!1E
0

1

dl^U~n11,...,n8!

1W~1,...,n,n11,...,n8!&l , ~23!

where the angle brackets denote canonical averaging. H
ever,F (1)(n,n8/v) corresponds to a cluster in which then8
particles do not satisfy condition~ii ! of the cluster definition.
By performing a Monte Carlo simulation based on the M
tropolis algorithm but in which then8 particles are not con-
strained by condition~ii !, one can determine the number
configurationsn2 that satisfy this condition within the tota
number n1 of unconstrained configurations. The Helmol
free energyF(n,n8/v) of the (n,n8/v) cluster, in whichboth
conditions~i! and ~ii ! are satisfied, is then given by@19#

F~n,n8/v !5F ~1!~n,n8/v !2kT lnS n2

n1
D . ~24!

Using Eq.~14! we can then get the number of clusters for
particular set of values ofn, n8, andv. This procedure can
in principle, be repeated for any value ofn, n8, andv. It will
be more efficient, however, to work in the grand ensemb
Indeed, in such an ensemble the computer effort will
largely spent on the values ofn8 depending on their contri-
bution to the (n,n8/v) cluster.

If we fix n andv we can perform a Monte Carlo simula
tion in whichn8 can vary, as an adapted version of the gra
canonical Monte Carlo algorithm. Following Mezei@25# and
Yao, Greenkorn, and Chao@26# the algorithm consists of the
following steps.

~1! Initialize with n, n8 andr1 ,...,rn1n8 where the center of
mass of the particles labeled 1 –n coincides with the
center of the sphere of volumev. The shell molecule
~labeledn! is located on the shell of the same sphe
The remainingn8 particles are in the spherical volum
v1.v whose center coincides with the center ofv. This
constitutes the configuration~a! and it must also satisfy
criteria ~i! and ~ii ! of the cluster definition.

~2! Generate a random number between 0 andn1n8. If this
number lies between 0 andn proceed to step~2.1!; if it
lies betweenn andn1n8 proceed to step~2.2!.

~2.1! Randomly select one of the (n21) particles of
the cluster, but exclude the shell molecu
Move this particle randomly within a sma
sphere of radiusd centered on the center of th
particle. Then displace all the other (n1n8
22) particles over the same vector distan
defined such that the center of mass of then
particles remains fixed. If this new configura
tion does not satisfybothconditions~i! and~ii !
the system is returned to configuration~a! and
a new trial involving the movement of one o
the (n21)-cluster particles is initiated. This
procedure is repeated until an allowed move
achieved. Then the configuration is denoted
~b!. We then go to step~3!.
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~2.2! Randomly select one of then8 particles from
the vapor and move it randomly within a sma
sphere of radiusd centered on its center. If thi
new configuration does not satisfy conditio
~ii ! or if the particle lies outside of the volum
v1 the system is returned to configuration~a!
and a new trial involving the move of one o
the n8 particles of the vapor is initiated. Thi
procedure is repeated until an allowed move
achieved. In this case the system configurat
is also denoted as~b!. Then proceed to step~3!.

~3! Choose between configurations~a! and ~b! according to
the usual Metropolis criterion. If~b! is not chosen,~a! is
restored, renamed~b!, and considered as the new co
figuration.

~4! Select a random numberj between 0 and 1. If 0<j
,0.5, one tries to add a particle to the system and p
ceeds to step~4.1!. If 0.5<j,1 one tries to remove a
particle from the system and thus proceeds to step~4.2!.

~4.1! Generate a random position for the new p
ticle somewhere inv1 . This new particle is
assumed to be part of the vapor. If it do
not satisfy condition~ii ! of the cluster defini-
tion, the trial is rejected and a new trial
initiated until success is achieved. Wit
success we have a new configuration~c!. If
the quantity Badd5(v1 /L3)@1/(n811)#exp
@2b(Uc2Ub2m)#.1, configuration~c! is ac-
cepted and we proceed to step~5!. In the ex-
pression forBadd, Uc ~respectively,Ub) refers
to the energy of the configuration~c! @respec-
tively, ~b!# andm corresponds to the chemica
potential of the particles in the system. IfBadd

<1 a random numberc is generated betwee
0 and 1. If Badd.C, configuration~c! is ac-
cepted, otherwise the configuration~b! is re-
tained. We then proceed to step~5!.

~4.2! Select one of then8 particles at random and
remove it from the system to get a new co
figuration which is denoted by~c!. If the quan-
tity Brem5(n8L3/v1)exp@2b(Uc2Ub1m)#.1,
configuration~c! is accepted and we proceed
step ~5!. If Brem<1, a numberc is generated
between 0 and 1. IfBrem.c, the configuration
~c! is accepted, otherwise configuration~b! is
retained. We then proceed to step~5!.

~5! Take the accepted configuration, which becom
configuration~a!, to be the final configuration. I
will serve as the initial configuration for the nex
cycle. Furthermore, the numbern8 of particles that
it contains is stored in the memory. A new s
quence is then initiated at step~2!.

From this simulation one extracts the relative numbers
(n,n8/v) clusters for differentn8, the values ofn and v
n

-

-

s

f

being fixed. But the absolute number of the (n,n8/v) clusters
is known for a particular set (n,n8/v). This allows access to
the absolute numbers of (n,n8/v) clusters for all values of
n8. From Eq.~16! we can thus calculate the number of (n/v)
clusters.

Note that this model resembles a method used by Kus
and Oxtoby@16#, except that no arbitrary selection of a vo
ume is required. The cluster is built on the center of mass
that translation can be accommodated properly and red
dancy can be avoided in the relation of the cluster to
macrovolume of the system@27#.

IV. CONCLUDING REMARKS

This paper has focused on the development of a theory
a cluster that contains part of the vapor and represents
extension of the (n/v)-Stillinger cluster that formed the cen
terpiece of Refs.@8,19#. Some approximations that were ne
essary in the theory of that cluster are unnecessary in
case of the extended cluster. For example, there is no nee
deal with an exclusion volumevc that varies with the con-
figuration of the cluster particles. On the other hand,
original (n/v)-Stillinger cluster, although demanding mo
approximation, had the virtue of more clearly exhibiting t
mechanism by means of which it avoids anad hoccharacter,
a feature discussed in Refs.@8,19#, and demonstrated sem
quantitatively in the simulations of Ref.@8#. The extended
version of this cluster includes the same mechanism imp
itly but therefore in a nontransparent manner.

The extended cluster deals withvc implicitly as part of
the simulation. Thus although there is this loss of transp
ency the extended version is able to take advantage of
power of simulation to reduce the level of approximatio
Since the theory of nucleation is exponentially sensitive
any approximation this is a desirable feature. On the ot
hand, the size of the simulation will certainly have to
increased in the implementation of the extended cluster.

The determination of the equilibrium numbers of the e
tended cluster is optimized by the use of the grand canon
Monte Carlo algorithm. We are currently using this alg
rithm to determine the equilibrium numbers of extend
clusters for comparison with the numbers derived by the p
vious approach. Such a comparison does require exten
simulation and we plan to report on it in future.

In closing, we remark once again that the theory of t
extended cluster is applicable to other clusters similar in
ery detail except that the method of avoiding redundan
may differ.
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