PHYSICAL REVIEW E VOLUME 60, NUMBER 1 JULY 1999

Extended (n/v)-Stillinger cluster for use in the theory of homogeneous nucleation
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In this paper we develop a theory for an extended version ofrihe) {Stillinger cluster that has been used
in nucleation theory, wherea means the number of particles constituting the cluster characterized by the
volumewv. The “extended cluster” incorporates some of the surrounding supersaturated vapor. This cluster,
although requiring more extensive simulation than the origiméb -Stillinger cluster, is almost devoid of
approximation. It maintains the nad-hocnature of the originalrf/v)-Stillinger cluster implicitly. The theory
of the cluster is also applicable to clusters which avoid redundancy by some other means than the so-called
“connectivity requirement.” Simulation of the extended cluster is now being implemented and will be used in
the theory of the homogeneous nucleation rg$d.063-651X%99)08307-3

PACS numbsg(s): 64.60.Qb, 82.60.Nh

I. INTRODUCTION mines the equilibrium numbers of clusters, and by making
use of the principle of detailed balance determines the coef-
Homogeneous nucleation is a physical process that hdgient y;,; from ;. (i) Once these coefficients are known,
been known for many years. The early theory of this processhe constraint on the system is released and the master equa-
known as the classical nucleation the¢GNT), was devel- tions are solved under steady state conditions.
oped and improved in the years 1920-1940 by Volfigy CNT has proven to be quite successful in the prediction of
Farkas[2], Becker and Dong [3], Zeldovich[4], and Fren- critical degrees of supersaturation but much less successful
kel [5]. In it, clusters oin particles participating in the nucle- in the prediction of nucleation rates. Moreover, CNT con-
ation process are assumed to be spherical drops of valumetains approximations which at first sight seem minor but
having the properties, e.g., surface tension and density, of thghich, for small systems, can lead to considerable error. In
macroscopic liquid. In addition, drops were assumed to growaddition, the liquid is assumed to be incompressible and the
or decrease in size by the gain or loss of one partiatem translational degrees of freedom of the drop are either ig-
or moleculg at a time. This stepwise process is described bynored or treated improperly. This lack of rigor seems to be at

the following set of master equations: the origin of what is known as the “replacement free en-
df ergy” problem which gave rise to a controversy tkiiat our
i . opinion) has been finally resolvdd]. Due to these and other
Gt oA vt 121 @ P Al

approximations, there have been attempts, during the last
two decades, to develop molecular theories for the rate of
in which f; represents the number of drops consisting of nucleation. A short review of these theories can be found in
particles. The parametefd; and vy;,,; can be evaluated by Ref.[8]. To our knowledge, most of these theories are based
assuming that the master equation remains valid in a coren the set of master equations, Et)), and make use of the
strained equilibrium at the same degree of supersaturation gtinciple of detailed balance. However, they differ in the
which the nucleation rate is to be determined, although atvay in which clusters participating in the nucleation process
present an equivalent method referred to the saturated vapare defined, and in how the numbers of clusters, in con-
is often preferred6]. In the constrained equilibrium the strained equilibrium, are evaluated. This paper concerns this
number of dropd; equals its equilibrium counterpanf and  last but crucial point. As already indicated, from the number
use is made of the principle of detailed balance to obtain @f clusters in the equilibrium distribution of clusters and
relation betweerB; andy;, ;. Finally, the coefficient@; are  from an approximate expression for the coefficiefis it is
estimated by determining the collision rates between th@ossible to determine the evaporation coefficiepts This
drops and the particles of the gas, assuming that all the paallows the calculation of the nucleation rate. However, until
ticles that collide with a drop stick to {sticking coefficient recently, not much attention has been paid to a precise defi-
equal to unity. The determination of the nucleation rate cannition of the clusters involved in the nucleation process. Sev-
thus be divided into two distinct step&) One first deter- eral molecular theories of homogeneous nucleation, some
based on ther(/v)-Stillinger cluster, have been developed to
overcome this difficulty[8—16]. This paper describes a
* Author to whom correspondence should be addressed. FAX: 38nethod, free of almost any approximation, and with the aid
(0)3 88 41 40 99. Electronic address: schaaf@ics.u-strasbg.fr ~ of computer simulation, for the evaluation of equilibrium
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distribution of the O/v)-Stillinger clusters. One of the first acteristic of the nucleation process and is certainly one of the
and most important findings of these new approaches wagasons that previous rate theories have not been completely
that, in order for a cluster definition to be usable in a mo-successful. Thus it is absolutely necessary to limit approxi-
lecular theory, it must allow aonredundantcounting of mation as much as possible, and to analyze the effects of
clusters. The concept of thenfv)-Stillinger cluster arose residual approximations in detail.

from the requirement that in order for an assembly qfar- In this paper we extend the definition of the
ticles to constitute a cluster and thus participate in the nucle¢n/v)-Stillinger cluster so that it includes part of the vapor,
ation process, the assembly must have a lifetime long enough fact, n’ particles of that vapor. This extended cluster
to allow it to interact with particles in the surrounding vapor, therefore requires the introduction of an additional parameter
and eventually grow. Certainly, not all configurationsrof n’, so that we will refer to it as am(n’/v)-Stillinger clus-
particles in a vapor satisfy this property. It is thus necessaryer. We derive the number(n,n’/v) of such clusters for a

to find one(or several parametgs) that allow the selection system at equilibrium. It will be seen that the derivation is
of assemblies oh particles that best imitate the requisite almost rigorous, requiring only the introduction of very mi-
clusters. One definition that satisfies the nonredundancsior approximations that are much less severe than those in-
property and which, in our opinion, comes close to satisfyingroduced previously8,19]. The equilibrium number of clus-
the second requirement was introduced by Stillifdéfina  tersp(n)==2,,2,p(n,n’/v), together with the principle of
different context, and is based on a connectivity criterion.detailed balance, allows the estimation of the coefficients
This definition was used in homogeneous nucleation theoryn addition to defining ther(,n’/v) cluster we present an

by Rao, Berne, and Kald4 8] and more recently in Ref8], adaptation of the grand canonical Monte Carlo simulation
for the case of particles interacting with spherically symmet-algorithm that allows the evaluation of its equilibrium distri-
ric potentials. The requirement is the following. bution.

Consider a vapor consisting ®f particles. Them par- Before proceeding to this derivation it is appropriate to
ticles among them belong to a particufacluster if (i) there  remark that the same theory is applicable to any cluster,
exists a continuous path between any pair of them, @nd similar in all details except that the nonredundancy require-
no such path exists between any particle in the surroundingnent could be chosen in another way. It is, however, neces-
vapor and any particle of the clust@aut can still exist within  sary to enforce nonredundancy.
the particles of the vapor, i.e., the vapor may contain other

clusters. A continuous path is deﬁ_ned as one joining the Il. EXTENDED CLUSTER
centers of particles, such that the distance between two con-
nected centers is less than a prescribed distachich As already mentioned, almost all theories of homoge-

may be denoted as the “connectivity distance.” Thusnan neous nucleation require a knowledge of the numbers of

cluster consists of the assembly of configurations of theclusters present in the vapor at equilibrium. As indicated, we

whole system that satisfy both conditiofi and (ii). This  have developed a rigorous method that allows the determi-

can be expressed mathematically in the following form. Thenation of these numbers and is applicable to any cluster defi-

particles labeled 1,.n,belong to am cluster if the function nition as long as it satisfies thronredundancyequirement
[19]. Our starting point was thi-particle distribution func-
tion in the canonical ensemble. After a lengthy but straight-

ay(ry, M) aa(ly, e fsfsgseofn) =1, (2} forward calculation the following expression was obtained

for the number of (/v) clusters having alefinedvolume

where r, represents the position of théth particle. 'anging fromov to v +dv:

aq(rq,...,ry) =1 if particles 1,..n satisfy condition(i) and

is 0 otherwise.ay(ri,...,\1;fnt1,---Fn) =1 if the (N—n) dv 53
remaining particles from the vapor satisfy conditigin and p(n/v)dv =77 exp —B| —kTIn(A""n )
is 0 otherwise. The second condition ensures that the nonre-

dundancy requirement is satisfiehy nonredundant defini-
tion of a cluster can be expressed in a form equivalent to Eq. +Pug(v)—un+Uo—kT
(2). The precise expressions fowr(rq,...,r,) and
as(rq,....Fnir+1,---fy) depend, however, on the precise A—3(n=2)[312
definition of the cluster(Note that the cluster defined in Ref. XIn ?J' dré---f dr/_,
[13] forms a subset of the Stillinger cluster. (n=1)! v v

In a previous papdrl9], we derived an expression for the
number ofn clusterq (n/v)-Stillinger cluster$in a vapor of , , , ,
N particles at equilibrium in a volum¥. This derivation Xexp—ﬁU(rl,...,rn)al(rl,...,rn)>H,
began with theexactexpression of th&l-particle distribution
function. Some approximations were, however, necessary in 3)
obtaining the final result. Use of this result, in a theory for
the rate of nucleation, demonstrated that even these appar-
ently minor approximations led to variations of several or-wheregis 1kT, ks the Boltzmann constant, the absolute
ders of magnitude in the predicted nucleation f& More  temperaturey the volume of the systerfusually taken as 1
generally, the fact that any approximation can affect thecnt), P is the pressure of the vapor, andis the de Broglie
nucleation rate by several orders of magnitude seems chawavelength. In this expression the integrations are performed



PRE 60 EXTENDED (n/v)-STILLINGER CLUSTER FOR USEN. .. 773

with the center of mass of the particles fixed at the center within the cluster and the magnitude of the approximation
of the spherical volume of the cluster, and the primed introduced by the mean field character @b§ is not clear.
coordinates are in the center of mass frame. One ofnthe Fortunately, in most cases involving nucleation in vapors this
particles is maintained in the spherical shell that contains thézteraction is small enough to be neglected.

volume, and is denoted as the “shell molecule.” For these Unfortunately, all these approximations act exponentially
reasons the integration involves onlyn<{2) particles. on the numbers ofr{/v) clusters at equilibrium. Even if they
U(ry,....ry) represents the interaction energy of th@ar-  seem minor they can still cause variations in the nucleation
ticles. To derive this expression from the rigorous startingrate of several orders of magnitufg). Hence, to avoid these
point of theN-particle distribution function it was necessary gpproximations and to derive the numbers ofy) clusters

to spatially(not energetically decouple the cluster from the ¢ precisely as possible, we have developed the following
vapor. To accomplish this it was assumed tha_t the particleﬁqodiﬁed approach. In this approach,i’/v) clusters are

of the cluster excluded a volume,(v), a function of the  yofineq in the following way: (i) the n particles satisfy the

volumeu of the cluster itself. In the derivation of E{f) of ondition(i) of our initial definition of an 6/v) cluster; and

Ref. [19] it was even assumed, as one approximation, tha};ii) a spherical volume ; concentric with the sphere definin
v.(v)=v. However, to each configuration of the particles in b 1 b 9

, " :
the cluster there corresponds a possibly different exclusio € clus(tfr enclosas r?d:étlonal_ plart|crlles thaF belong to th_e
volume. In Ref[8] it was shown that changing the exclusion Surrounding vapor. These particles thus satisfy the condi-

volume can influence the nucleation rate by several orders dfon (ii) in our initial definition of the (/v)-Stillinger clus-
magnitude. A second approximation involved the assumptiof€’- V1 IS thus larger tham. It should be emphasized that
that 9F(N—n,V—uv.)/dv.= — P whereF(N,V) is the Hel- then’ particles can be foundverywherén v, and thus also
moltz free energy of the system composedgdarticles ina in v as long as they satisfy the conditié¢i) of the initial
volumeV. Stillinger, in his pioneering pap¢f.7], used the cluster definitionv, is surrounded by the vapor and the re-
grand canonical ensemble to show that this relation becam®@aining system is thus characterized by the volwiiev
increasingly exact as the vapor became more attenuated. dahd the number of particled—n—n’. V-v; acts as a par-
has been showf20] that the pressur® appearing in this ticle and energy reservoir.

expression does not exactly equal the pressure of the vapor We now derive the expression for the number
but depends on the shapewyf. This effect should, however, p(n,n’/v)dv of (n,n’/v) clusters characterized by a volume
be small. Finally, the terntJ, represents the mean interac- ranging fromv to v +dv. We follow a route similar to that
tion energy between the cluster and the gas. To estitbgte used in Ref[19]. Start with then-particle distribution func-

it was assumed that the particles belonging to the clustetion. Then the number of configurations of the entire system
were uniformly distributed over the volume and that the composed oN particles in the volumé/ such that there is
density of the vapor was constant up to a distadgahat the center of a first particle idr,, the center of a second
depended on the cluster definition. Interaction of the clusteparticle indr,,..., and thecenter of an Ki+n’)th particle in
with the vapor depends on the configuration of the particlesir,, ./ is

N! dry-drpen fvary g fydryexgd — BU(ry, ... ry)]
(N—n—n")! Z(N,V) '

4

PNy, P )dr e dr =

whereZ(N,V) represents the configuration integral of tNeparticles inV. Condition(ii) of the cluster definition is repre-
sented mathematically by the functien(rq,....,rn;rns1,---.fnen’), €qual to unity when the particles located in configuration
ri,....Fhene Satisfy the conditiorii) and is 0 otherwise. It is assumed here that the particles dre part of the cluster, while
the remainingn’ particles are part of the vapor in . The mean number ofh(n’/v)-Stillinger clusters irdr,dr,---dr,, / iS
then

n,n'/ .
RO (P netseFraen)dr g -dro

NI dry--drpepy q J' q ( )
= 7 r Tyttt Inaq(Fq,...0r
Z(N,V) (N_n_n ) Voo, n+n’+1 Voo N&1Lh L n

Xag(F,y ek nilonstseofnen ) XA —BU(r1,....rn) ] 5)

Expressing the coordinates of all the{ n’) particles in the center of mass frame of thparticles, Eq(5) can be written as

RO (ry kit R)DRdr e --dr!

A ngnrs n+n’
3 'o.odr!
n®N! dRdry---dr .

:Z(N,V) (N=n—n")! fvUldrn+n,+1fvUldrNal(rz,...,rn)

Xap(ly el hilhiase ) eXd = BU(R I, ... r\)], (6)
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whereR is the coordinate of the center of mass and where the factiar the Jacobian of the transformation to center of mass
coordinateg21]. Label withn the shell molecule which defines the volume of the cluster. The number,of/p) clusters
having their centers idR aroundR and volumes ranging betweenandv +dv is thus given by

de dfé"‘fdfé—lfd dr,’J dr,’wlmf dr!, RO, e )
v v v Ul

N!n3
~ (N=n—n")In1(n—1)! Z<Nv Jdrz Jdr" 1J ary f drn Jdrw'

xf drn+n,+l...f dryas(ry, ...t as(ry, ... rh  )exd —BUry,....Fysnr eI - (7
V—-uvq V-vq

The (h—1)! reflects the fact that, because of the presence of the shell molecule,ronly) (particles in the cluster are
indistinguishable. The number of(n’/v) clusters inV (e.g., 1 cm) is thus given by

, NIn3 V du
p(n,n'/v)dv= (N=n=n")In'I(n=1)! Z(N.V) fdr2 Jdrn 1f dr/ - fdrnm,

Xay(ry,...rh)as(ry, ... exd —BU(r,...lhen)]

va drn+n’+1"'fv dryexd —BU(Ininr 1y M IEXE = BW(ra, . Fanr iTasnr s 1y s
U1 U1

®

whereW(rq,....Ffnen ifnenr+1.----fn) IS the interaction energy between the{n’) particles of the (,n’/v) cluster and the
remaining particles of the vapor system. However, in contrast to the case whergdhel(ster was in direct contact with the

vapor, in the (,n’/v) cluster there are only the' particles of the vapor, contained in the volumg in direct contact with

the particles from the vapor outside of the volume If the difference in the radii between the volumesindv, is greater

than the characteristic range of the interaction between two particles then th®@rm...r o ifnanrs1,---fn) 1S negli-

gible. Indeed, this quantity can be related to an interfacial tension that vanishes when the properties of the vapor are identical
on either side of the interfad®2]. Equation(8) can then be rewritten as

o d = N!n3V do Z(N—n—n’,V— Ul)fd fd fd f
p(n,n’/v) YT (N=n—n)In"I(n—1)! Z(N,V) 2 Moa ] ey vy "nin
Xay(ry,...rhas(ry, ... r  )exd —BU(r,...Fhen) ] 9

Since the Helmholtz free enerdy(N,V) andZ(N,V) are related by

(10

(Z(N,V))
F(N,V)=—kTIn

NIASN
expression9) can be rewritten as

A3(N—n—n’)

p(n,n’/v)= AN

exp{— B[F(N—=n—n’,V—v,)—F(N,V)]}

"(n o Jdr2 -fdr;,lj drr’,ﬂ---J driraa(ry,...rp)ao(ry,. .. r o )exd —BU(ry,...rin)].
v U1 U1

(11)
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But in this approach the volums, is spherical and indepen-

dent of internal configuration which was not the case of the p(n/v)= E p(n,n’/v). (16
excluded volume (v) in our earlier approach. The pressure n'=0

P appearing in the relatiodF(N—n,V—uv4)/dv,;=—P now

corresponds to the pressure of the vapor exterior to the clus-

ter. This relation is only rigorous for an infinite volung lIl. COMPUTATIONAL PROCEDURE

but represents a good approximation for not too small vol-

umesv [20]. Thus The number of §/v)-Stillinger clusters can be deter-

mined using Eq914)—(16) together with Monte Carlo simu-
(12) lation of the free energy appearing in E45). We first con-
centrate on the evaluation B{n,n’/v) for a given f,n'/v)
cluster. It is known that computer simulation cannot yield the
free energy of a system directly but only the difference in the
free energy between different states. Then(/v) cluster is

F(N,V)-F(N-n—n',V—v,)=—Puv;+(n+n’)u.

Equation(11) then becomes

A3y dy

p(n,n’/v)dv= - composed of two kinds of particles. These arentparticles
n"t(n—1)! belonging to the cluster itself and the particles that are
X exp{— B[Pv,—(n+n")ul} part of the vapor. In a first step we evaluate the free energy

F((n,n’/v) for an (n,n’/v) cluster in which then’ par-
d d d ticles are not subject to the conditidin) of the cluster defi-
ry Fi-1 P s nition. Thus
. )

Xay(ry,...rp)aa(ry,...f )

A~ 3(n+n’72)n3/2
xex ~ BU(Tyve.lnsn) ] CE ,v)__kTm( Sy vt
n-1)! J,

which can be rewritten as

vad(n—l)’fv d(n+1)---

vV o3
p(n,n’/v)dv=xgxgn exp{— B[Pv,—(n+n")ul}
X +n') ay(1,...

x exd — BF(n,n'1v)], (14 fvld(n ") eg(d,.n)
whereF(n,n’/v) is the internal Helmoltz free energy of the xexp—BLU(L,..n)+U(n+1,.n+n")
(n,n’/v)-Stillinger cluster, and can be written in the form

+W(1,...n,n+1,...n’)]}). (17)
A—S(n+n —2)n3/2
F(n,n"/v)=—kTIn UG JdZ
To determine this free energy we assume thanthparticles
Jd(n 1 f d(n+1)’ interact with all the other particles through the potential

\u(r) where\ is a coupling parameter that varies from 0 to

o 1 andu(r) is the pair potential between two particles. We
XJ d(in+n")" ay(1,...n) thus define
U1
X as(1,..n,...,n+n")
, A —8(n+n'=2)n3/2
Xexp{—B[U(l,...n)+U(n+1,...n+n ) F(l)(n n'lv )\):_len —j dz2’---
' ' n''(n—1)! v
+W(1,...n,n+l,...n’)]}), (15)
xfd(n—l)’f d(n+1)’
v U1
where di’ is shorthand fordr{ and U(1,...n) stands for
U(rq,...,ry). Moreover W(1,...n,n+1,...n+n’) represents XJ d(n+n’) ay(1,...n)
the interaction energy between theparticles belonging to v1
the “dense” part of the cluster and tmé particles which are wexn — B[U(1 U
part of the gas enclosed in volumsg. It should be noted =AU
that, unlike Pv in the case of the earliem(v)-Stillinger X(n+1,..n+n")

cluster,Pv, in the exponent of Eq14), has beemigorously
separated from the other parts of the exponent. Finally the ,
number of fi/v) clusters is given as FAW(L,..pn+ 1, 0]} (18)
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For A=1 one has F®(n,n'/v,x=1)=F3(n,n'/v),
whereas foin =0 we have

A —3(n=2)p312

(l) , _ __ - ’--n
FO(n,n"/v,\=0) kT'“{ (n—2)! Judz

xf d(n—1)"a4(1,...n)

-3n’

Xex;{—ﬂU(l,...n)]T

va d(n+1)'---fv d(n+n")’
(19

The first term involves only tha particles satisfying condi-
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Equation(21) can be rewritten in abbreviated notation as

1
F(l)(n,n'/v)zF(l)(n,n’/v,)\=0)+f d\{(U(n+1,..n")
0

+W(1,...n,n+1,..n" )y, (23
where the angle brackets denote canonical averaging. How-
ever,F®)(n,n’/v) corresponds to a cluster in which thé
particles do not satisfy conditiofii) of the cluster definition.
By performing a Monte Carlo simulation based on the Me-
tropolis algorithm but in which th@’ particles are not con-
strained by conditior{ii), one can determine the number of
configurationsy, that satisfy this condition within the total
number v, of unconstrained configurations. The Helmoltz
free energyF(n,n’/v) of the (n,n’/v) cluster, in whichboth
conditions(i) and (ii) are satisfied, is then given 39|

tion (i) of the cluster definition and corresponds to the
free energy of anr{/v) cluster that can be evaluated by the
methods described in Ref$8,19. The second term in-

volves then' particles corresponding to an ideal vapor of .
n’ particles in the volume, and is therefore known. The USing Eq.(14) we can then get the number of clusters for a
free energyFM(n,n’/u,A=0) can therefore be evaluated. particular set of values af, n’, andv. This procedure can,

L]
F(n,n'/v)=FY(n,n"/v)—kTIn - (24)
1

F(n,n'/v) is then given by
FO(n,n"/v)=FY(n,n"/v,\=0)

. Jl N JFD(n,n'lv,\)
0 2N

. (20

in principle, be repeated for any valuergfn’, andv. It will
be more efficient, however, to work in the grand ensemble.
Indeed, in such an ensemble the computer effort will be
largely spent on the values of depending on their contri-
bution to the 6,n’/v) cluster.

If we fix n andv we can perform a Monte Carlo simula-
tion in whichn’ can vary, as an adapted version of the grand

which corresponds to the charging method first developed bganonical Monte Carlo algorithm. Following MeZ@i5] and

Kirkwood [23] and often used in computer simulatif2d].
Using Eqg.(18) we obtain

FY(n,n'/v)=FY(n,n'/v,x=0)

1 1

Jo o | 2

de(n—l)’f d(n+1)'---
v U1

><J d(n+n’)'[U(n+1,..n+n")

+W(1,..n,n+1,..n")]aq(1,...n)
xexp[—B[U(L,..n)+AU(n+1,..n+n")
+AW(1,...n,n+1,..n")]}, (21)

where

Z’(n,n’/v,)\):fvdz'...fvd(n_l)'fv d(n+1)--

xf din+n")" ay(1,...n)

xexp[— BLU(L,..n)+AU(n+1,..n+n’)
+AW(1,...n,n+1,..n")]}. (22

Yao, Greenkorn, and Chd4@6] the algorithm consists of the
following steps.

(1) Initialize withn, n" andr4,...,r ., where the center of
mass of the particles labeled h-coincides with the
center of the sphere of volume. The shell molecule
(labeledn) is located on the shell of the same sphere.
The remainingn’ particles are in the spherical volume
v1>v whose center coincides with the centewofThis
constitutes the configuratio@ and it must also satisfy
criteria (i) and (ii) of the cluster definition.

(2) Generate a random number between 0 mand’. If this
number lies between 0 antdproceed to steg2.1); if it
lies betweem andn+n’ proceed to stef2.2).

(2.1) Randomly select one of the(- 1) particles of
the cluster, but exclude the shell molecule.
Move this particle randomly within a small
sphere of radiu$ centered on the center of the
particle. Then displace all the othen{n’
—2) particles over the same vector distance
defined such that the center of mass of the
particles remains fixed. If this new configura-
tion does not satisfipoth conditions(i) and(ii)
the system is returned to configuratita and
a new trial involving the movement of one of
the (n—1)-cluster particles is initiated. This
procedure is repeated until an allowed move is
achieved. Then the configuration is denoted as
(b). We then go to steg3).
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3

(4)

(2.2 Randomly select one of the’ particles from  being fixed. But the absolute number of ther{’/v) clusters
the vapor and move it randomly within a small is known for a particular setn(n’/v). This allows access to
sphere of radiug centered on its center. If this the absolute numbers ofi(n’/v) clusters for all values of
new configuration does not satisfy condition n’. From Eq.(16) we can thus calculate the number af¢)
(i) or if the particle lies outside of the volume clusters.
v, the system is returned to configurati¢a Note that this model resembles a method used by Kusaka
and a new trial involving the move of one of and Oxtoby[16], except that no arbitrary selection of a vol-
the n’ particles of the vapor is initiated. This ume is required. The cluster is built on the center of mass so
procedure is repeated until an allowed move isthat translation can be accommodated properly and redun-
achieved. In this case the system configurationdancy can be avoided in the relation of the cluster to the
is also denoted a®). Then proceed to stgf3).  macrovolume of the systefi27].

Choose between configuratiofey and (b) according to

the usual Metropolis criterion. kb) is not chosen(a) is IV. CONCLUDING REMARKS
;iijsut?arteigﬁ rename(b), and considered as the new con- This paper has focused on the development of a theory for

a cluster that contains part of the vapor and represents an
extension of therf/v)-Stillinger cluster that formed the cen-
terpiece of Refd8,19]. Some approximations that were nec-
essary in the theory of that cluster are unnecessary in the
case of the extended cluster. For example, there is no need to
deal with an exclusion volume, that varies with the con-
figuration of the cluster particles. On the other hand, the
original (n/v)-Stillinger cluster, although demanding more
approximation, had the virtue of more clearly exhibiting the
mechanism by means of which it avoids @h hoccharacter,
X . a feature discussed in Ref8,19], and demonstrated semi-
success we have a new fonf'glfrat'@' If quantitatively in the simulations of Ref8]. The extended
the quantity Bagq=(v1/A%)[1/(n"+1)]€XP  yersion of this cluster includes the same mechanism implic-
[=B(Uc—Up—m)]>1, configuration(c) is ac- iy put therefore in a nontransparent manner.
cepted and we proceed to stép. In the ex- The extended cluster deals with implicitly as part of
pression foB,qq, U, (respectivelyUy) refers  the simulation. Thus although there is this loss of transpar-
to the energy of the configuratioie) [respec-  ency the extended version is able to take advantage of the
tively, (b)] and . corresponds to the chemical power of simulation to reduce the level of approximation.
potential of the particles in the system.Bfqq4  Since the theory of nucleation is exponentially sensitive to
=<1 a random numbey is generated between any approximation this is a desirable feature. On the other
0 and 1. If B4V, configuration(c) is ac- hand, the size of the simulation will certainly have to be
cepted, otherwise the configuratigh) is re- increased in the implementation of the extended cluster.
tained. We then proceed to stéj). The determination of the equilibrium numbers of the ex-
(4.2) Select one of then’ particles at random and tended cluster is optimized by the use of the grand canonical
remove it from the system to get a new con- Monte Carlo algorithm. We are currently using this algo-
figuration which is denoted bfc). If the quan-  fithm to determine_ the equilibrium number_s of extended
tity Byem= (N’ A3/v,)exd —B(U.~Up+u)]>1,  clusters for comparison with the numbers derived by the pre-
configuration(c) is accepted and we proceed to Vious approach. Such a comparison cioes require extensive
step(5). If Bey=<1, a numbery is generated simulation and we plan to report on it in future.

between 0 and 1. IB,..> ¢, the configuration In closing, we remark once again that the theory of the
(o) is accepted Oth:ITNise’ configuratiéi) is extended cluster is applicable to other clusters similar in ev-

retained. We then proceed to sté. ery detail except that the method of avoiding redundancy

(5) Take the accepted configuration, which becomes"® differ.
configuration(a), to be the final configuration. It ACKNOWLEDGMENTS
will serve as the initial configuration for the next
cycle. Furthermore, the numbet of particles that P.S. is indebted to the “Institut Universitaire de France”
it contains is stored in the memory. A new se- for financial support. This work has been partially supported
quence is then initiated at stép). by the “National Science Foundation” and the “Centre Na-
tional de la Recherche Scientifiqu&Action Incitative No.

Select a random numbef between 0 and 1. If &¢
< 0.5, one tries to add a particle to the system and pro
ceeds to stegd.1). If 0.5<£<1 one tries to remove a
particle from the system and thus proceeds to $4ep).
(4.1) Generate a random position for the new par-
ticle somewhere irv,. This new particle is
assumed to be part of the vapor. If it does
not satisfy condition(ii) of the cluster defini-
tion, the trial is rejected and a new trial is
initiated until success is achieved. With

From this simulation one extracts the relative numbers 06939. The authors thank Professor D. S. Corti for a careful
(n,n"/v) clusters for differentn’, the values ofn and v reading of the manuscript and for his constructive remarks.
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